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Analysis of Asymmetrical Hot Strip Rolling 
by the Slab Method 

Y.-M. Hwang and G.-Y. Tzou 

Two analytical models based on the slab method are proposed to examine the behavior of sheet at the roll 
gap during the asymmetrical hot strip rolling process. In model I, the effect of shear stress in vertical 
plane at the roll gap is considered, whereas this effect is neglected in model II. Neutral points between 
rolls and strip, rolling pressure distributions along the contact art length of rolls, rolling forces, and roll- 
ing torques can be calculated easily by these proposed analytical models. The results including rolling 
pressure distributions, rolling forces, and rolling torques by both models are compared. The rolling pres- 
sure distribution predicted by model I shows that a "pressure well" develops in the cross shear region. On 
the other hand, no "pressure well" is predicted in model II. Furthermore, the rolling forces predicted by 
model I are always lower than those measured in the experiment, whereas those predicted by model H are 
always higher. However, the averages of the values predicted by model I and II are in fairly good agree- 
ment with the experimental data. Thus this analytical approach can offer useful knowledge in designing 
the pass schedules of the asymmetrical hot strip rolling processes. 
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1. Introduction 

MANY studies have been published (Ref 1-4) concerning sym- 
metrical strip rolling, under which the peripheral velocity and 
radius of upper roll are equal to those of lower roll, respec- 
tively, since a uniform plastic deformation model of  strip roll- 
ing was proposed by Orowan (Ref 5). Plastic deformation 
mechanism of the strip at the roll gap during symmetrical strip 
rolling has been made clear. Recently proposed is the asymmet- 
rical strip rolling process, in which the rolling parameters, such 
as peripheral velocity, radius of  upper roll, and so forth, may be 
different from those of the lower roll. This type of untraditional 
rolling process becomes more important because it has such ad- 
vantages as less rolling pressure, less rolling force, less rolling 
torque, and better property of  strip surface compared with sym- 
metrical strip rolling. Most research related to the asymmetri- 
cal hot strip rolling are experimental investigations (Ref 6-10). 
A few works were carded out by a numerical method (Ref 11- 
13). Most of these studies, however, have not considered the ef- 
fect of  the shear stress at the roll gap or relied on the 
time-consuming numerical approach. Because the frictional 
coefficient between the rolls and sheet in cold strip rolling is 
relatively small compared to that in hot strip rolling, an analyti- 
cal model using the slab method without considering the shear 
stress was presented by the present authors (Ref 14) to investi- 
gate the deformation mechanism of sheet at the roll gap during 
asymmetrical cold strip rolling. In this study, two analytical 
models are proposed. One considers the effect of  shear stress in 
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each slab element during asymmetrical hot strip coiling; the 
other does not. By this analytical approach, the rolling pressure 
distributions, rolling forces, and rolling torques can be ob- 
tained easily and quickly. The differences between the results 
obtained by these two models are compared. Effects of  the vari- 
ous rolling parameters are systematically discussed; they are 
rolling speed ratio, thickness reduction, front and back ten- 
sions, and so forth., upon the rolling pressure distribution, roll- 
ing force, and rolling torque. 

2. Mathematical Model 

2.1 Assumptions 

The formulation involved in developing the analytical mod- 
els in asymmetrical hot strip rolling are simplified by employ- 
ing the following assumptions: 

�9 The rolls are rigid, and the strip being rolled is rigid, plastic 
material. 

�9 The plastic deformation is plane strain. 

�9 Stress are uniformly distributed within each slab element. 

�9 Sticking friction occurs at the interface between the rolls 
and sheet; that is, the frictional shear stress, x, is equal to the 
yield shear stress, k. 

�9 The flow directions of strip at the entrance and exit of  the 
roll gap are both horizontal. 

�9 The total roll contact arc is small compared to the circum- 
ference of the roll. 

These assumptions provide a physically realistic approxi- 
mation for hot rolling processes of thin strip or sheet. 
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2.2 F o r m u l a t i o n  

Figure 1 is the schematic illustration of  asymmetric hot strip 
rolling. The radius and speed of  the upper roll are different from 
those of  the lower roll. The plastic deformation region at the 
roll gap is divided into three distinct regions according to the 
directions of  frictional forces between the rolls and strip. These 
are denoted by zone I for the entry region, zone II for the cross 
shear region, and zone III for the exit region in Fig. 1. The sub- 
scripts 1 and 2 in all variables stand for the upper and lower 
rolls, respectively. 

Figure 2 shows the stress state within a slab element in zone 
I, in which the directions of  the upper and lower sticking fric- 
tional forces are both forward; that is, the velocities of both the 
upper and lower rolls are larger than that o f  the strip. 

The mathematical expressions for the horizontal and verti- 
cal force equilibrium are summarized, respectively, as: 

d(hq) 
dx +Pltan01 +PEtan02- (xl + x2) = 0 (Eq 1) 

and 

where q is the horizontal stress, h is the thickness at the roll gap; 
Pl and P2 are the specific rolling pressures of the upper and 
lower rolls, respectively; x is the horizontal distance from exit 
point of roll bite. 01(x ) and 02(x ) are contact angles of  the upper 
and lower rolls at x cross section, respectively; 171 and x 2 are 
sticking frictional stress along the upper and lower roll sur- 
faces, respectively. 

Combining Eq 1 and 2 gives: 

h ~xx + dh x 2 x 2 
(P + q)~xx = Xl ~1-1 + X2 R'-'~ + Xe (Eq 3) 

where 

dh 2x 

dx Req 

2RIR 2 

Req - RI + R 2 

P =Pl  + "~ltan01 =P2 + "~2tan02 (Eq 2) "~e = 'tl +'C 2 
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x e is the effective sticking frictional stress, and Req is the effec- 
tive radius. 

The formulations derived above are specifically applied to 
both models as below. 

2.2.1 Model  I 

According to the Prandtle compression theory of  plate (Ref 
15), the yield criterion of  the sheet considering shear stress in 
zone I and III can be expressed as: 

~k 
p + q = - ~ - =  Y (Eq4) 

where Yis the effective yield strength. 
The yield shear stress, k, is expressed as: 

__%z 
k - ~ (Eq 5) 

where Gyp is uniaxial yield strength.Refer to "Appendix A" for 
the detailed derivation. 

The sticking frictional forces in zone II exerted by the upper 
and lower rolls are opposite in direction. The yield criterion in 
zone H based on the shearing compression slip line theory (Ref 
16) is employed and expressed as: 

p + q = k =  Y (Eq6) 

Refer to "Appendix B" for the detailed derivation. 

2.2.2 Model  I I  

Traditionally, the shear stress in vertical plane is neglected; 
therefore, the von Mise 's  yield criterion in any zone can be ex- 
pressed as p + q = 2k. 

Because the procedures of  derivation for both models are al- 
most identical with each other, the derivation for only model I 
is described below. 

Substituting Eq 4 or 6 into Eq 3 and rearranging it in dimen- 
sionless form, we obtain: 

d q _ (  1 2") 2 y 2 X  
h-'~x-~l 5--'~2~x - Req+'~e (Eq 7) 

where 

x 2 
h = ho + ~e q 

h o is the final strip thickness. 
To solve Eq 7 by integration, we obtain: 

B E 1 q = Ax - ~ in (x 2 + ~ + c* D) - ~ tan- x (Eq 8) 

where 

(171 '~2 "~ 

B- -2Y 

C = Req17 e 

D = Reqh o 

E = D A - C  

In zone I, where the directions of  frictional force are all for- 
ward, that is., the strip velocity is smaller than that of  upper and 
the lower rolls, the effective frictional stress, x e, is 2k. Also, Eq 
4 is valid (Y = nk/2). Likewise, in zone III, because the direc- 
tions of  sticking frictional force are all backward, that is., the 
strip velocity is larger than that of the upper and lower rolls, the 
form of  the differential equation in zone III is the same as that 
in zone I. Only the effective sticking frictional stress, x e, is re- 
placed by "re = - k  - k = -2k. In zone II, the sticking frictional 
forces are opposite in direction; accordingly, 17e = - k  + k = 0. 
Also, Eq 6 is valid (Y = k). 

2.3 Boundary  Condit ions 

Because the horizontal position of  the neutral point on the 
upper roll does not necessarily coincide with that on the lower 
roll, the direction of the sticking frictional force exerted by the 
upper roll on the strip is not necessarily the same as that by the 
lower roll. Assume that the velocity of  the lower roll is larger 
than that of the upper roll, and the neutral points of  the upper 
and lower rolls are denoted by Xnl and Xn2, respectively. The 
boundary conditions for the three distinct regions can be ex- 
pressed as follows. 

2.3.1 Zone III 

(0 < x -< xn2), x e = -2k; p + q = nk/2 at x = 0 (or co = 0), 

q = qo 

qo = - ~ In D + c~ (Eq 9) 

where B 3 = nk and qo is the front tension exerted on the strip. 

From the above boundary condition, the integral constant c~ 
can be obtained as: 

n 3 
c~ = qo + -~- In D (Eq 10) 

Hence, the horizontal stress (qIII) and the rolling pressure (Pro) 
in zone HI can be expressed, respectively, as: 
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B3 E3 x , 
qnI = A 3 x - ~ l n ( x  2 + o ) -  ~ tan - 1 ~  + c  3 

xk 

Pin = T - qlII 
(Eq 11) 

where 

A3 = - R e q k  ('~1 

C 3 = Req'~ e 

E 3 = DA 3 - C 3 

2 . 3 . 2  Z o n e  I 

(Xnl < x < L ) , "C e = 2k; p + q = rck/2 at x = L (or to = toi = 

t a n - l L / ~ e q h o ) ,  q = qi 

B 1 E l to  i , 
q i = A 1 L - - - - 2 - 1 n  (L 2 + D )  - - - ~ - +  c l (Eq 12) 

where B 1 = ~k, qi is the back tension exerted on the strip, and L 
is the length of  contact. 

2 . 3 . 3  Z o n e  I I  

(Xn2 < x < nl), 1;e = o;P + q = k (in the case of V 1 < V2). V 1 and 
V 2 are the rolling peripheral speeds of  the upper and lower rolls. 

Due  to the continuity of  boundary  condit ions at x = Xn2 (or 
to = ton2) the horizontal stress (qIn) in zone III a tx  = Xn2 must  be 
equal to that in zone II (qII); that is, qnI = qn. Accordingly,  c~ 
and c~ have the relationship as follows: 

A3Xn2 -/732 In (x22 + D) - ~/D tan-I - ~ + c ;  xn2 

B 2 E2 
= A2xn2 - - T  In (Xn22 + D) - ~ tan -1 xn2 * " ~ +  C2 (Eq 15) 

where 

/ 
C 2 = 0  

E 2 = DA 2 - C 2 

Moreover, due to the cont inui ty  of  boundary condit ions at 
x = Xnl, that is., qI = qlI, we obtain:  

B1 -- E1 1 xnl 
a lXnl - -~- In (x21 + D) - - ~  tan- - ~  + c] = A2Xnl 

From this boundary  condition, c~ can be expressed as: 

B! E 1 
c~ = qi - A l L  + "-~ In (L 2 + D) + ~ toi 

where 

Al=Reqk(R2 R2) 

C 1 = Req~ e 

E 1 = DA 1 - C 1 

(Eq 13) 

B 2 E 2 
- - T  In (Xn21 + D) - ~ tan -1 xnl * ~ +  c 2 

F rom Eq 15, c~ can be expressed as: 

C~ = B*Xn2 + F'ton2 + U*ln(x22 + O) + c~ 

where 

B* = A 3 - A 2 

F* = (E 2 - E3) 

(Eq 16) 

(Eq 17) 

Therefore, the horizontal  stress (qI) and the roll ing pressure (PI) 
in zone I are expressed as: 

B1 El x 
q! = A l X  - ~ In (x 2 + D) - ~ tan -1 ~ + c~ 

nk 
PI = - ) -  - q~ (Eq 14) 

Xn2 
ton2 = tan-1 .~eqh ~ 

, 1 
U = ~ (B 2 - B3) 

B 2 = 2k 
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From Eq 16, c~ is also expressed as: 

c~ = A*Xnl + E'ton1 + V* In (X2nl + D)+  c~ (Eq 18) 

where 

A* =A 1 - A  2 

E* = (E 2 - E l ) / - ~ -  

1 
V*=~(B2-BI )  

V is the rolling peripheral speed. Substituting Eq 18 into Eq 17 
then gives: 

A*Xnl + E'toni + V* In (x21 + D) + c~ - B*xn2 - F'ton2 

-U* In (xan 2 +O) -c~= 0 (Eql9) 

where 

qlI = A2x - B2 In (x 2 + D) - & tan -1 x . 
2 ~/D ~ + c2 

PII = k - qII (Eq 21) 

When c~, c[, and c] are known from Eq 13, 17, and 10, respec- 
tively, the rolling pressures PI, PII, and Pill can be obtained by 
Eq 14, 21, and 11, respectively. 

2.4 Rolling Force 

The rolling force is determined by integrating the normal 
rolling pressure over the arc length of contact. Thus, the rolling 
force per unit width, P, is given by: 

P =PIII  + Pn + PI (Eq 22) 

where 

J~O n2 Pm * * = PaxdX=III 1 +1112 (Eq 23) 

Xnl 
t 0 n l  = tan-I "~JX-~eqho III~= A 3x2 B3 . ~k --~-- n2+-~-Xn2 In (x22 + O)-(c3+'-~-)Xn2 

Xn2 
ton2 = tan-I ~t~r=eqh o 

To comply with the assumption of  incompressibility, the posi- 
tions of  the upper and lower neutral points, Xnl and Xn2, have the 
following relationship. 

Xnl R 1 q X22 h o 
= VA "~'-i + (V A -- 1) ~'~" A (Eq 20) 

where 

V2 
v,,= 

:_1( 
RA= 1 + 

Substituting Eq 20 into Eq 19, the solution of the neutral point, 
xn2, can be determined easily using the bisection numerical 
method. Because xn2 is determined, xnl and c~ can be obtained 
by Eq 20 and 17. Then, the horizontal stress and the rolling 
pressure, qIl and PII, in zone II can be obtained as: 

> ~ III~ = E 3 + + B3~-D- ton2 

nl 
Pn = PlidX = II~ + II~ (Eq 24) 

Xn2 

II; = A2~2 B2 
- 2 "~nl + "2"- Xnl I n  (X21 + D) - (c~ - k )Xnl  

+B2 ~ -  ton1 +E2 + 

A 2 B 2 
II~ = -~- X2n2 - - T  xn2 In (Xn22 + D) + (c~ - k) Xn2 

_ (to 2 '042  

PI = : PldX=I*l+I~ 
Zn! 

(Eq 25) 
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2 . 5  Rolling Torque 
The rolling torques, T l and T 2, exerted by the strip on the up- 

per and lower rolls, respectively, can be calculated by integrat- 
ing the moment of  the sticking frictional force about the roll 
axis along the arc of  contact. Therefore, the rolling torque of the 
upper roll is obtained as: 

TI=R](-  fn2 kdx - ;~' kdx+ r kdx] 
[, o x~2 x ,  ) 

= RIk(L - 2Xnl ) (Eq 26) 

The rolling torque of  the lower roll is: 

0 Xn2 Xnl 

(L - 2Xn2) 

kdx I = R2k 
) 

(Eq 27) 

The total rolling torque, T, needed is: 

T= TI + T 2 (Eq 28) 

2.6 Limiting Conditions for Successful Rolling 
Under the limiting conditions, both neutral points will be 

positioned inside the roll gap; accordingly, a successful rolling 
process can be implemented. For the purpose of  finding the 
limiting conditions for roll speed ratio and reduction, let Xn2 be 
0 and V 2 > V 1. Then Eq 20 becomes: 

h o 
XnI = RI ~/(VA-1)-'~A (Eq 29) 

Substituting Eq 29 into Eq 19, the following relationship can be 
obtained: 

A*Xnl + E*C0nl + V* In (x21 + D) + c~ - U* In D 

* = 0  -- C 3 (Eq 30) 

In Eq 30, ton1 is the function of  Xnl, and xnl is the function of  
V A as shown in Eq 29. Thus, the limiting roll speed ratio, VA, 
can be determined by the same procedures as those employed 
to determine the neutral point Xn2 in Eq 19 and 20. 

For the case with front tension, the front tension (qo) is al- 
lowed only in a range such that Xnl is not out of  the contact arc 
(i.e., Xnl < L). The limiting value Ofqo, for which Xnl reaches L, 
can be expressed as: 

~k 
qo = c; - -~- In D (Eq 31 ) 

where 

c~ = A*L + E*O~ i + V* In (L 2 + D) + c] - B*xn2 - F*O)n2 

~/RAL2 - R 2 (V A - 1)h o 
- U* In (x22 + D )  

Xn2 = RAVA 

The procedures for deriving neutral points, Xnl and Xn2, rolling 
pressure distributions, p, rolling force, P, and rolling torque, T, 
in model II are the same as those for model I. Only the effective 
yield strength is replaced by Y = 2k in all zones. 

3. Results and Discussion 

Figure 3 shows the difference in rolling pressure between 
both models. The solid line indicates the results by model II in 
which the effect of shear stress is not considered at the roll gap, 
whereas the dashed line indicates the results by model I in 
which the effect of shear stress is considered. From the rolling 
pressure distribution predicted by model I, it is clear that: (a) a 
"pressure well" develops in the cross shear region (CSR), and 
(b) the CSR widens and the rolling pressure becomes less as the 
roll speed ratio, V21V 1, increases. Furthermore, (c) the rolling 
pressures predicted by model I are always lower than those by 
model II. 
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The variation of  the distributions of the rolling pressure for 
different thickness reductions are demonstrated in Fig. 4. With 
increasing reduction, the rolling pressure increases, and the 
CSR becomes narrower. Moreover, the position of  the CSR 
moves toward the entrance of  the roll gap when reduction in- 
creases. 

The effects of roll speed ratio, V21V1, upon rolling force and 
rolling torque by both models are shown in Fig. 5 and 6, respec- 
tively. Rolling force and rolling torque are calculated by Eq 22 
and 28, respectively. Evidently, both the rolling force and roll- 
ing torque decrease with increasing roll speed ratio. Rolling 
force also decreases with increasing front and back tensions. 
The rolling torque decreases with increasing difference be- 
tween the front and back tensions when the former is larger than 
the latter. The rolling force and rolling torque by model I are 
lower than those by model II. 

Figure 7 shows the effect of  various Req /h  i ratios upon spe- 
cific rolling pressures by both models, h i is the initial strip 
thickness. The rolling pressure at the neutral point increases 
with larger ratios of  Req/h i. When r = 30%, the limiting roll 
speed ratios, V21Vt, by model II are 1.375 and 1.355 for Req/h i = 
50 and 100, respectively. However, the corresponding roll 
speed ratios predicted by model I are 1.4 and 1.388, respec- 
tively. Note that the limiting roll speed ratios by model I are 
larger than those by model II. These analyses about limiting 
rolling conditions are necessary and important in asymmetrical 
hot strip rolling processes. 

Figure 8 shows the effect o f  Req/h i upon the limiting reduc- 
tion, r, by both models. The limiting roll speed ratio V2/V t in- 
creases with increasing Req/hi. Although the contact length 
decreases with Req/h i (Req is fixed), the rolling pressure distri- 
butions increase with increasing Req/h i as shown in Fig. 7. 
Hence, the limiting roll speed ratio increases with increasing 
Req/h i. Figures 7 and 8 show that as r = 30%, the limiting roll 
speed ratios are Vz/V 1 = 1.355 and 1.375 for Req/h i = 50 and 
100, respectively, by model II. They are 1.388 and 1.4 by model 
I. 

Figure 9 illustrates the effect of  roll speed ratio, V2/Vt, the 
reduction, r, upon limiting front tension, qo. This illustration in- 
cludes the cases of  xn2 = 0 and Xnt = L. The case of  xn2 = 0 
means the neutral point, Xn2, reaches the exit of  the roll gap be- 
fore x nt reaches the entrance of  the roll gap, whereas the case of  
Xnl = L means the neutral point, x hI, reaches the entrance of  the 
roll gap before xn2 reaches the exit. Under a fixed reduction and 
the condition ofxn2 = 0, the limiting front tension, qo, increases 
as the roll speed ratio, Vz/V 1, increases. As Xn2 = 0 occurs, the 
limiting front tensions qo are 0, 5 kg/mm 2, and 18.59 kg/mm 2, 
corresponding to V2/V l = 1.2832, 1.3209, and 1.4278 for r = 
30% by model II, respectively. As Xnt = L occurs, the limiting 
front tension qo increases under a fixed reduction with decreas- 
ing roll speed ratio. Note that the front tension cannot exceed 
2k, otherwise the fracture at the exit of  the roll gap will occur. 
Consequently, only the limiting front tension under 2k is valid. 
By model I, with the conditions mentioned above, these limit- 
ing front tensions are 0, 5 kg/mm 2, 13.594 kg/mm 2, etc. The 
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limiting front tensions by model I are smaller than those by 
model II under a fixed roll speed ratio as xn2 = 0 occurs, 
whereas the results are opposite to those as Xnl = L occurs. 
Also, when the reduction, r, increases under a fixed front ten- 
sion, the allowable roll speed ratio increases generally, because 
the rolling pressure distribution and the contact length become 
larger under a larger reduction. 

The validity of  this approach is verified by a comparison be- 
tween the predicted rolling forces by both models and experi- 
mental measurements by Shiozaki (Ref 6), as shown in Fig. 10. 
The margin of  error between the theoretical predictions and ex- 
perimental measurements is approximately 15%. Note that the 
theoretical predictions by model I are always lower than ex- 
perimental measurements, whereas those by model II are al- 
ways higher than experimental measurements. In other words, 
if the effect of  shear stress in each slab is taken into considera- 
tion, the predictions for rolling force are smaller than the ex- 

qi=O . 5kg/mm 2, qo=2kg/mm 2 

o ~ v~_. v~ 

~t) v2 - 1  Z A  / / ~ k ' M e a n  v a l u e  

" ~  u M o d c l  I 

cd .O RI =R2 =2 00mm, hi=3.2mm 

__ ~ i i i I i 
< f ~ 2  3 4 5 6 7 8 

Exper imenta l  Ro l l ing  Force ( N / m m  ) 

Fig. 10 Comparison of rolling forces between the theoretical 
predictions and experimental measurements 

perimental measurements. On the other hand, if  the effect of  
shear stress is neglected, the predictions are larger than the ex- 
perimental measurements. I f  we take the average value of the 
rolling forces calculated by models I and II, the predicted mean 
values are in good agreement with the experimental measure- 
ments as shown in Fig. 10. 

4. Conclusion 

This work provides an efficient analytical method to evalu- 
ate the rolling force and rolling torque based on two models. A 
few achievements obtained are summarized. 
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Fig. A1 Differential element for plane strain 

�9 The rolling characteristics including rolling pressures, roll- 
ing forces, rolling torques, and limiting conditions obtained 
by using models I and II were compared. 

�9 Both models illustrate that the rolling pressure and rolling 
force can be greatly reduced using asymmetrical rolling 
processes (i.e., Vl ~ V2). 

�9 The limiting rolling conditions for the reduction, roll speed 
ratio, and front tension can be obtained readily. A success- 
ful asymmetrical rolling process can be ensured by control- 
ling the rolling conditions under the limiting values. 

�9 By this analytical approach, the rolling pressure distribu- 
tions, rolling forces, rolling torques, and limiting rolling 
conditions can be obtained quickly in comparison with 
other numerical methods. 

�9 Moreover, the rolling forces predicted by these models 
were compared with experimental results. If  we take the av- 
erage values of the rolling forces determined by models I 
and II, the predicted mean values are in good agreement 
with the experimental measurements. 

5. Appendix A 

Equation 4 is derived using zones I and III in model I. 
The yield criterion considering the shear stress in a differen- 

tial element (see Fig. A1) for plane strain can be expressed as: 

Cix-(Yy=2k41-1~--I 2 (EqA1) 

where o x is the horizontal normal stress, 13y is the vertical nor- 
mal stress, and Xxy is the shear stress in the x-y plane. 

Fig. A2 
sion 

i n k + + - - - -  + , 

Fo I 

++o 

g, 

Boundary conditions of plane strain shearing compres- 

Prandtle (Ref 15) assumes that the shear stress in vertical 
plane is linearly distributed. Thus, Xxy can be expressed as: 

2k 
Xxy = -~- y (Eq A2) 

Substituting Eq A2 into Eq A1 and integrating each term on 
both sides with respect to y gives: 

h h h 

~2 CxdY - ~2 fly@ = j2 
h h h 
2 2 2 

2k ~ / 1 - / - ~ ) 2  dy (Eq A3) 

Then, dividing each term by h, we obtain: 

h h h 
- -  m 

1 ~2 o x d y _ l  j2 1 
h h g _h_ t Y y d Y = h f 2 h  

2 2 2 

2k ~1  - ( -~ )2  dy (EqA4) 

The first term on the left side can be denoted by the uniform 
horizontal normal stress q. Also, the second term on the left side 
can be denoted by the uniform vertical normal stress p. Change 
the variable 2ylh in the term on the right side by sin 0. After the 
integration, we can finally obtain Eq 4 as follows. 

~k p+ q=--~- 

where 

h 
1 Oy dy 

2 
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6. Appendix B 

Equation 6 is derived using zone II in model I. 
Boundary condition of  shearing compression for plane 

strain is shown in Fig. A2. Because the contact length in zone II 
(CSR) is much larger than thickness, generally slip line in zone 
II can be assumed as a straight line (refer to Ref 16). In Fig A2, 
N O and F o are the normal force and shear force applied to the 
edge plane of  the strip, respectively, mk is the frictional shear 
stress applied to the upper plane of  the strip, andp is the average 
normal stress applied to the lower plane. From the slip-line 
theorem (Ref 16), we get: 

~ = 1 + " ~ f - i - ~ -  No , kh a (EqA5) 

and 

p = ~  (Eq A6) 

From the force equilibrium, we get: 

N N o c o s a - F o s i n a  

q = 2a - h a cos a 
(Eq A7) 

where 2a is the thickness of the plate shown in Fig. A2. 

Le tF  o = 0, then: 

N~ (Eq A8) 
q=h--'a 

Substituting Eq A6 and A8 into Eq A5 then gives: 

p + q = k(1 + a[-i-z-m - ~  ) (Eq A9) 

In hot strip rolling, the surface frictional stress is assumed to 
be equal to the yield shear stress, k; i.e., x I = x2 = k and m = 1. 
Thus we obtain Eq 6: 

p + q = k  
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